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An approach for the construction of homoclinic orbits of non-linear dynamical
systems with phase spaces of dimensions equal to two or three is proposed here.
The non-linear Schrodinger equation and Lorenz system are considered. Quasi-
Pade' approximants are used for this construction. Potentiality and convergence
conditions used earlier in the theory of non-linear normal vibration modes make it
possible to solve the boundary-value problems formulated for the orbits and to
evaluate initial amplitude values.
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1. INTRODUCTION

Homo- and heteroclinic trajectories (HT) corresponding to localized standing or
travelling waves in non-linear physical systems have been extensively studied in the
literature [1,2]. Some important existence theorems of the localized waves have
been presented in references [3}5]. The existence of localized waves in Hamiltonian
systems consisting of weakly coupled non-linear oscillators was proved in reference
[6]. The HT orbits of the non-linear Schrodinger equation were analytically
approximated by constructing Pade' approximants (PA) in reference [7].

In this work a new approach for HT construction in non-linear dynamical
systems with phase spaces of dimensions equal to two or three is proposed. The
non-linear Schrodinger and Lorenz equations are considered. Quasi-Pade'
approximants (QPA) are used for the construction. Note that Quasi-Pade'
approximants which contain powers of some parameter and exponential functions
were considered in reference [8]. Potentiality and convergence conditions used
earlier in the theory of non-linear normal vibration modes [9, 10] make it possible
to solve the boundary-value problems formulated for the HT orbits and to evaluate
initial amplitude values with acceptable precision.

2. CONVERGENCE CONDITION

In order to join local expansions, fractional rational diagonal two-point Pade'
approximants (PA) [11] can be used. Assume that there are local expansions
22-460X/00/100971#13 $35.00/0 ( 2000 Academic Press



972 YU. V. MIKHLIN
obtained at small and large values of a parameter c (for example, the parameter is
an amplitude value of the periodic solution) [9,10,12]. For small values of c the
local expansion can be determined as a power series in c while for large values of c,
it can be determined as a power series in c~1:
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Compare expressions (2) with expansions (1). By retaining only the terms with an
order of cr (!s)r)s), a system of 2(s#1) linear algebraic equations will be
obtained for the determination of a

j
, b

j
. Since the determinant of the system D

s
is

generally not equal to zero, the system of algebraic equations has a single exact
solution, a

j
"b

j
"0.

Select the PA corresponding to the retained terms in equation (1) having
non-zero coe$cients a

j
, b

j
. Without loss of generality, it can be assumed that

b
0
"1. Now, the system of algebraic equations for the determination of a

j
, b

j
become overdetermined. All the unknown coe$cients are determined from (2s#1)
equations while the &&residual'' of this approximate solution can be obtained by
substitution of all the coe$cients into the remaining equation. Obviously, the
&&residual'' (or &&error'') is determined by the value of D

s
since at D

s
"0 non-zero

solutions and consequently exact PA will be obtained in the given approximation
by c. It can be shown that the &&residual'' is equal to the value of the normalized
determinant D

s
.

Hence, the following is a necessary condition for convergence of the succession of
PA (2), at sPR, to fractional rational functions P

=
[9,10,12]. Namely,

lim
s?=

D
s
"0. (3)

It is possible to utilize the condition for obtaining some unknown parameter
which is contained in local expansions.

It is possible to generalize the necessary condition for convergence (3) to
quasi-Pade' approximants (QPA) which contain powers of some unknown and
exponential functions.

Example 1. Consider a function f (z)"((1#0)5z)/(1#2z))1@2. Local expansions
obtained at small and large values of z are the following:

f (z):1!0)75z#1.219z2 (zP0), (4)

f (z):0)5 (1#0)75z~1!0)656z~2) (zPR). (5)

Introduce some unknown parameter B in the second expansion (5):

f (z):0)5B (1#0)75z~1!0)656z~2) (zPR). (6)
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It is possible to obtain the parameter B constructing PA and using convergence
condition (3).

So, consider equation (2) in the case s"0: PA
0
"a

0
/1. By comparing it with

expansions (4) and (6) one has two equations for a determination of a
0
: a

0
"1 and

0)5B"a
0
. An overdetermination of the algebraic system will be eliminated if

B(0)"2. The same result can be obtained also from a condition D
0
"0,

corresponding to equation (3) in this approximation.
Next, consider equation (2) for s"1: PA

1
"(a

0
#a

1
z)/(1#b

1
z). Comparing it

with equations (4) and (6) one has four equations: a
0
"1, a

1
"b

1
!0)75, a

1
"0)5B b

1
,

a
0
"0)5B (1#0)75 b

1
). Simple calculations show that an ambiguity of this

approximation will be reduced if B(1)"1)438.
Finally, in the case s"2, a comparison of the corresponding PA

2
with equations

(4) and (6) gives six equations (they are not mentioned here) and the ambiguity of
this approximation will be reduced if B(2)"1)0016. The value can be obtained also
from a condition D

2
"0, corresponding to equation (3) in this approximation. It is

clear, that the sequence B(i) rapidly converges to the correct value B"1.

Example 2 (Autonomous Du.ng equation). Consider the equation

UA!U#U3"0.

It will be constructed using PA or QPA, a separatrix of the equation, that is
a solution satisfying the following conditions:

U@ (0)"0, lim
t?=

U(t)"0.

Local expansions of the solution obtained at small and large values of t are the
following:

U(1)"a
0
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2
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4
t4#2(tP0), (7)
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0
is an arbitrary constant, a

2
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0
(1!a2

0
), a
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0
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a
6
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0
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0
#27a4

0
)/720,2 ,

U(2)"b
0

e~t#0(e~3t), (tPR), (8)

where b
0

is an arbitrary constant.
Taking into account a form of local expansions (7) and (8), the following form of

the QPA is chosen:

QPA(n)"e~t
a
0
#a

1
t#a

2
t2#2#a

n
tn

1#b
1
t#b2

2
t#2#bn

n
t

. (9)

Constant a
0

can be calculated from the well-known energy integral condition:
a
0
"21@2. Thus, a value of b

0
must be obtained. By comparing equation (9) with

equations (7) and (8) and expanding e~t into a power series if tP0, one has
algebraic equations for the determination of a

1
and b

1
. But the problem is

unsolvable: one obtains some proportionality condition: a
1
/b

1
"b

0
(i"0, 1, 2,2 ).
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The cause of the unsolvability is that the terms of the order of e~3t are not
considered in the procedure. Taking into account the terms a more complicated
form of the QPA is chosen namely:

QPA"e~t
a
0
#a

1
e2t#2

1#b
1
e2t#2

. (10)

Comparing equation (10) with equations (7) and (8) and expanding e~t and e2t into
power series, one has the following algebraic equations:

e~t (a
1
/b

1
)"b

0
e~t (tPR),

a
0
#a

1
"a

0
(1#b

1
), 2a

1
!(a

0
#a

1
)"a

0
2b

1
,

0)5(a
0
#a

1
)!2a

1
#2a

1
"a

0
2b

1
#a

2
(1#b

1
) (tP0).

Taking into account a condition of elimination of the residual one obtains the
following: a

0
"23@2, b

1
"1, b

0
"2a

0
,23@2. Hence, the well-known solution is

obtained: U"e~t 23@2 e2t/(1#e2t). The same result is obtained considering the
terms of the order of e~5t, etc.

3. POTENTIALITY CONDITION

On the analytical HT a "nite-dimensional system behaves like a conservative
single-degree-of-freedom system:

xK#P(x)"0.

Integrating along the HT within limits of t"0 to #R, one introduces the
following potentiality condition for a system in a general form, xK#f (x, xR , t)"0:

Q f (x, xR , t) xR dt"0. (11)

Note that the integration can be realized in diverse systems for homoclinic
trajectories within limits of t"0 to !R, or of t"!R to #R.

The potentiality condition was used in references [9, 10] for a construction of
closed trajectories of forced resonances and limiting cycles (which are equivalent to
non-linear normal vibration modes) in non-linear n-degree-of-freedom
non-conservative systems close to conservative ones. Note that similar ideas (waves
as particles) were utilized by G.B. Whitham in his works relating to non-linear
localized waves (Whitham's method) [13].

Example 3 (<an der Pol equation). Consider the equation

xK#x#exR (!1#x2)"0.

The potentiality condition (11) for a closed trajectory of the periodic solution will
be written as

Q3xR (!1#x2) dx"0 or Q xR 2 (!1#x2) dt"0. (12)
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In the "rst approximation, x
0
"A cos t, and a well-known result is obtained from

equation (12): A2"4.

Example 4 (Autonomous Du.ng equation). Consider the equation

UA!U#U3"0

and the following boundary conditions:

U@ (0)"0, lim
t?=

U(t)"0.

The potentiality condition is very simple here but the initial amplitude value will
be evaluated using in what follows, the local expansion of the separatrix obtained
for small values of t. This approach will be used in the next sections.

So, consider the local expansion

U(1)"a
0
#a

2
t2#a

4
t4#2(tP0), (13)

where a
0

is an arbitrary constant, a
2
"0)5a

0
(1!a2

0
), a

4
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0
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0
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0
)/24,

a
6
"a

0
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0
) (1!24a2

0
#27a4

0
)/720, etc.

By substituting equation (13) to equation (11), one obtains the following:

P
=

0

(!U#U3)U@ dt"(A t2#B t4#C t6#2) D=
0

, (14)

where A"!0)5a2
0
(1!a2

0
)2, B"!a2

0
(1!a2

0
)2 (1!3a2

0
)/6, C"!a2

0
(1!a2

0
)2

(5(1!3a2
0
)#3(1!24a2

0
#27a4

0
))/360, etc.

We rebuild then expansion (14) to the corresponding PA. This is an analytical
continuation of the local expansion obtained in equation (14) ad in,nitum.

Step 1: Comparing the simplest PA"a
2
t2/(1#b

2
t2) and expansion (14), one

obtains the following equations: a
2
"A, 0"B#A b

2
. Condition PA D

t/=
"

a
2
/b

2
"0 gives us the initial value a

0
"$1.

Step 2: Let PA"(a
2
t2#a

4
t4)/(1#b

4
t4). Comparing the PA and expansion (14)

and using then the potentiality condition (11) one has after some calculations the
value a

0
"$1)11.

Step 3: Let PA"(a
2
t2#a

4
t4)/(1#b

2
t2#b

4
t4). Comparing the PA and

expansion (14) and using the potentiality condition (11), one has the equality
B!2AC"0 which gives us the value a

0
"$1)35.

Consequently, a sequential complication of the PA form permits one to calculate
a more exact value of the initial amplitude a

0
using only the local expansion of the

solution obtained at small values of t (exact value is equal to 21@2).

4. NON-LINEAR SCHRODINGER EQUATION

The boundary-value problem considered here could be obtained in a problem
of localized axially symmetric solutions of two-dimensional non-linear Schrodinger
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equation [4]:

yA(x)#(1/x) y@ (x)!y (x)#y3(x)"0,

y@(0)"0, lim
x?=

y (x)"0. (15)

A spectrum of the problem is discrete (there is a corresponding theorem of existence
in reference [4]). But all the solutions excepting one are unstable.

Since the sought solutions are expected to be analytic functions of x, they can be
expressed in Taylor series about x"0:

y(x)"a
0
#a

2
x2#a

4
x4#a

6
x6#2 . (16)

where a
0

is an arbitrary constant, a
2
"(1/4) a

0
(1!a2

0
); a

4
"(1/64) a

0
(1!a2

0
)

(1!3a2
0
); a

6
"(1/2304) a

0
(1!a2

0
) (1!3a2

0
),2 .

One utilizes the potentiality condition (11). Substituting expansion (16) into
equation (11) and integrating, one has

P
=

0

[(1/x) y@(x)!y (x)#y3(x)]y@dx"(At2#Bt4#Ct6#2) D=
0

, (17)

where A"!0)5a2
0
(1!a2

0
)2, B"!a2

0
(1!a2

0
)2 (1!3a2

0
)/6, C"!a2

0
(1!a2

0
)2

(5(1!3a2
0
)#3(1!24a2

0
#27a4

0
))/360,2 .

We construct then the diagonal Pade' approximant corresponding to the
obtained expansion, that is an analytical continuation of the corresponding local
expansions obtained in equation (17) ad in,nitum:

PA(4)"
a
2
x2#a

4
x4

1#b
2
x2#b

4
x4

,

where all coe$cients are computed in terms of a
0

by comparing the PA(4) and local
expansion (17):

a
2
"2a2

0
, a

4
"20 a

2
a
4
/9!11a2

2
a
6
/(6a

4
)#a3

2
a
8
/a2

4
!a3

2
/(3a

4
)

!a3
2
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6
/a3

4
!0)5 a4

2
a
6
/a8

4
, b

4
"1/3!a

6
/(6a

2
)!a

8
/a

4
#4a2

4
/(9a2

2
)

#a2
6
/a2

4
#0)5 a

2
a
6
/a2

4
, b

2
"!2a

4
/(3a

2
)!a

6
/a

4
!a

2
b
4
/(2a

4
).

Condition (11) must be realized for x to vary from zero to in"nity. By substituting
the limits of integration (yP0 if xPR and yPA if xP0), one obtains the
following algebraic equation:

a
4
/b

4
#0)5a2

0
!0)25a4

0
"0

for computing a value of a
0
. The value a

0
:$2)23 is obtained by not di$cult

calculation. The initial value corresponding to the decaying solution was
numerically estimated by means of selection as anum

0
:$2)206 Emaci [7].
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The sought solution can be expressed as the following local expansion about
xPR:

y"e~xx~(1@2)(b
0
#b

1
x~1#b

2
x~2#2)#e~3xx~(3@2)(c

0
#c

1
x~1#2)

#O(e~3x), (18)

where b
0

is an arbitrary constant; b
1
"!(1/8) b

0
, b

2
"(9/128) b

0
, c

0
"(1/8) b3

0
,

c
1
"!(0/64) b3

0
, etc.

Select the QPA which joins local expansions (16), (18) and describes the
homoclinic trajectory, of the form

QPA"e!z2 a
1
z~1#a

2
z~2#a

3
z~3#e!2z2

1Pb
1
z~1#b

2
z~2#b

3
z~3#e!2z2

(c
1
z~1#c

2
z~2#c

3
z~3)

(d
0
#d

1
z~1#d

2
z~2#d

3
z~3)

(19)

(here z"x2).
Compare the QPA (19) with local expansions (16) and (18). One obtains the

following algebraic equations:

a
1
"b

0
, a

2
"b

1
b
0
, a

3
"b

1
#b

2
b
0
, c

1
"b

0
d
0
, c

2
"b

0
d
1
,

c
3
"c

0
#b

1
d
0
#b

0
d
2
, a

3
#c

3
"0, a

2
#c

2
"(b

2
#d

2
)a

0
,

a
1
#c

1
!a

3
!3c

3
"(b

1
#d

1
)a

0
, a

0
#c

0
!a

2
!3c

2
"(b

0
#d

0
)a

0
!2d

2
a
0
,

!a
1
!3c

1
#0)5a

3
#4)5c

3
"!2d

1
a
0
,

!a
0
!3c

0
#0)5a

2
#4)5c

2
"(b

2
#d

2
)a

2
!2(d

0
!d

2
)a

0
.

Figure 1. The comparison of the analytical solution (19) of the non-linear Schrodinger equation as
a function of x (line 2), a corresponding analytical solution of the form of PA obtained in reference [7]
(line 3), and a corresponding checking solution with a numerically estimated exact initial value
anum
0

:$2)206 obtained by computer [7] (line 1).
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After some evaluations one has, using the convergence condition (3), the
algebraic equation for computing a value of b

0
. Finally, one has b

0
"1)453 which is

the last step of the solution of the boundary-value problem (15).
Figure 1 presents a comparison of the analytical solution of the form QPA (19)

(line 2), a corresponding analytical solution of the form of PA obtained in reference
[7] (line 3), and a corresponding checking solution with a numerically estimated
exact initial value anum

0
:$2)206 obtained by the computer [7] (line 1).

5. LORENZ SYSTEM

The methodology presented in this work is su$ciently general to be applicable to
construct analytical HT of the Lorenz system:

xR "10 (y!x),

yR "ox!y!xz, (20)

zR"!(8/3) z#xy.

The orbits exist in space of dimensions equal to three. We take into account the fact
that the motion is realized on the two-dimensional surface. Moreover, the orbit
must pass the z-axis and reach the equilibrium position x"y"z"0 if tPR

[1, 2].
Represent the two-dimensional surface as

y"p
0
#p

1
x#p

2
y#p

11
x2#p

12
xz#p

22
z2#p

111
x3#p

112
x2z#p

122
xz2

#p
222

z3#2. (21)

By substituting the representation into the equation, one has Ly/Lx 10 (y!x)
#Ly/Lz(!(8/3) z#xy)"ox!y!xz, which can be obtained from system (20).
Taking into account the conditions at t"R and grouping coe$cients with equal
powers, one has

p
0
"p

11
"p

22
"p

112
"p

222
"0, p

1
"(9#(81#40o)1@2)/20,

p
12
"3/(35!60p

1
), p

111
"p

1
p
12

/(29!40p
1
), p

122
"30p2

12
(43!60p

1
),2 .

Note that values of the coe$cients are rapidly decreasing when subscripts are
increasing. Further, a simpli"ed presentation of the surface, which contains only the
"rst two terms in equation (21), will be accepted.

The sought solution can be expressed as the following local expansions:

x"a
0
#a

1
t#a

2
t2#2, z"n

0
#n

1
t#n

2
t2#2(tP0), (22)

x"b
0
ej

2
t
#b

1
e(j

2
!(8/3))t

#2,

z"c
0
e~(8@3)t#c

2
e2j

2
t
#2 (tP#R), (23)

x"d
0
ej

1
t
#2,

z"c
1
e2j

1
t
#2 (tP!R). (24)
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Here eigenvalues of the linearized system are the following: j
1,2

"!5)5$
J30)25#10(o!1), where the case j

1
'0 corresponds to the outgoing branch of

the HT and the case j
2
(0 corresponds to the entering branch of the HT.

Here a
0
, b

0
, c

0
, d

0
are arbitrary constants, other coe$cients are de"ned by them;

a
1
"0, if we use an additional condition xR (0)"0 (this is possible since the system is

autonomous),

n
0
"(1!p

1
)/p

12
, n

1
"a2

0
!8n

0
/3, a

2
"5p

12
a
0
n
1
, n

2
"0)5(p

12
a2
0
!8/9)n

1
,

b
1
"b

0
c
0
/(o![1#(j!8/3)2] [1#0)1(j!8/3)2]), c

1,2
"b2

0
p
1
/(4j2

1,2
#8/3).

(25)

Note that the second representation in equation (24) has a higher order of small
quantity in comparison with the "rst representation.

Now, we di!erentiate the "rst equation (20) and make use of the simpli"ed
representation of the two-dimensional space y"p

1
x#p

12
x . One obtains the

following equation:

xK"10 [(p
1
!1)xR #p

12
(xR z#xzR )]. (26)

Assuming that z is an analytical function of x (along the HT trajectory), one has
equation (26) of the form of the system xK#P (x, xR )"0. Utilizing then the poten-
tiality condition (11), one has the following (by substituting expansions (22) under
the integral):

10 Q [(p
1
!1)xR 2#p

12
(xR 2z#xxR z)] dt"At2#Bt3#Ct4#2. (27)

Here

A"p
12

a
0
a
2
n
1
, B"[4(p

1
!1)a2

2
#p

12
(4a2

2
n
0
#4a

0
a
2
n
2
#3a

0
a
3
n
1
)]/3,

C"3(p
1
!1)a

2
a
3
#p

12
(1)5a2

2
n
1
#3a

2
a
3
n
0
#1)5a

0
(a

2
n
3
#a

3
n
2
)#a

0
n
1
a
4
.

One integrates then from zero to in"nity with the help of the reorganization to
the Pade' approximant (like to the operations in preceding sections).

Choose the PA of the following form in order to get two "rst bifurcations:

PA"

a
2
t2#a

3
t3

1#b
1
t#b

2
t2#b

3
t3

. (28)

Compare the PA with equation (27). One obtains the following system of algebraic
equations:

a
2
"A, a

3
"Ab

1
#B, 0"Ab

2
#Bb

1
#C, 0"Ab

3
#Bb

2
#Cb

1
,

0"Bb
3
#Cb

2
.

The condition PA D
t/`=

"a
3
/b

3
"0 gives us the following:

B4!3A C B2#A2C2"0, (29)

where A, B, C are given in equation (27).
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Note that a replacement tP!R in expansion (27) is identical to a replacement
BP!B in the subsequent calculations. Consequently, condition (29) makes sense
both for t"#R, and for t"!R.

Note too that equation (29) contains only even powers of the initial value a
0
, and,

consequently, the equation has real roots which are equal by absolute value and
have di!erent signs. This corresponds to the fact that the system under considera-
tion is invariant with respect to the transformation xP!x, yP!y, and a pair of
HT exists.

In the "rst place, one has from equality (29) a condition n
1
"0 (It corresponds to

a condition A"0). The condition is reduced to a2
0
!8n

0
/3"0, or

3a2
0
"(1!p

1
) (35!60p

1
). Real values of a

0
exist if p

1
*1, that is o*1. The value

o"1 gives us a point of "rst bifurcation: an appearance of the homoclinic outgoing
branch.

If n
1
O0 equality (29) is reduced to the following:

[a4
0
p2
12
#(59/3)a2

0
p
12
#40p

1
!296/9]2!6(a2

0
p
12
!8/3)2

[a4
0
p2
12
#(59/3)a2

0
p
12
#40p

1
!296/9]#4(a2

0
p
12

!8/3)4"0.

Real values of a
0

exist if p
1
*1)753 that is o*14)966.

One has a pair of little roots (which fork from zero) if the value o!14)966 is
positive and little. The roots are equal by absolute value and have di!erent signs.
The result corresponds to the real situation in the Lorenz system, and the value
oK14)966 can be regarded as a point of second bifurcation: an appearance of
homoclinic entering branch and the closed HT.

It is well known that a correct bifurcational value of the parameter o is near 14
[1, 2]. The comparison does not show bad precision of the analytical construction.
It is clear that a precision of calculations may be increased, for example, by
a consideration of more exact representation of the space (21).

It is possible to choose other additional initial value: zR (0)"0. In this case, in
expansions (22) the coe$cient n

1
"0.

a2
0
"((8/3)n

0
)/(p

1
#p

12
n
0
), a

1
"10a

0
(p

1
!1#p

12
n
0
),

a
2
"a2

1
/a

0
, n

2
"a

0
a
1
(p

1
#p

12
n
0
),

a
3
"(10/3) [a

2
(p

1
!1#p

12
n
0
)#p

12
a
0
n
2
],

n
3
"(1/3) n

2
[p

12
a2
0
!8/3#2a

1
a
0
], etc.

Utilizing then the potentiality condition (11) for equation (26) one has the
following (by substituting expansions (22) under the integral):

10 Q [(p
1
!1)xR 2#p

12
(xR 2z#xxR z)] dt"A

1
t#B

1
t2#C

1
t3#2. (30)
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One integrates then from zero to in"nity with the help of the reorganization to the
Pade' approximant of the form

PA"

a
1
t#a

2
t2

1#b
1
t#b

2
t2

. (31)

Compare the PA with equation (30). One obtains the following system of algebraic
equations:

a
1
"A, a

2
"Ab

1
#B, 0"Ab

2
#Bb

1
#C, 0"Bb

2
#Cb

1
.

The condition PA Dt"$R
"a

3
/b

3
"0 gives us the following:

B3!2ACB"0. (32)

Expressions of A, B, C and an analysis of equation (32) is not reproduced here
because the corresponding calculations are more complicated than in the preceding
case, xR (0)"0. Note that only in this case a "rst bifurcation is selected: an
appearance of the homoclinic outgoing branch in the point o"1. Next, when the
parameter o increases, a positive value n

0
(this is an initial value of the variable z at

a point zR (0)"0) increases continuously by modulus too, without any bifurcations.
One has here two unequal roots of equation (32) with di!erent signs. It corresponds
to the real situation in the Lorenz system, namely, HT amplitudes by z increase
continuously together with the parameter o.

Local expansions (22)}(24) can be used for the construction of HT in the form of
the simplest QPA:

x"ej
2
t a0#a

1
e~(8@3)t

1#b
1
e~(8@3)t

, z"e2j
2
t p0

#p
1
e(2j

2
#8/3)t

1#k
1
e(2j

2
#8/3)t (33)

(entering branch of HT),

x"
a
1
ej

1
t

1#b
1
e2j

1
t , z"

p
1
e2j

1
t

1#k
1
e2j

1
t , (34)

(outgoing branch of HT).
The QPAs contain local expansions for tP0 as well as for tP#Rand !R.

Compare equations (33) and (34) with equations (22)}(24). One obtains the
following algebraic equations:

a
0
"b

0
, a

1
"A#b

0
b
1
, p

0
"c

0
, p

1
"c

0
k
1
#c

2
,

a
0
#a

1
"(1#b

1
)a

0
, j

2
(a

0
#a

1
)!8a

1
/3"!8b

1
a
0
/3,

p
0
#p

1
"(1#k

1
)n

0
,

!8(p
0
#p

1
)/3#(2j

2
#(8/3))p

1
"(1#k

1
)n

1
#n

0
k
1
(2j

2
#(8/3))

(entering branch of HT), (35)

a
1
"d

0
, p

1
"c

1
, a

1
"(1#b

1
)a

0
, a

1
j
1
"2b

1
a
0
j
1
,

p
0
"(1#k

1
)n

0
, p

1
2j

1
"(1#k

1
)n

1
#n

0
k
1
2j

1
(outgoing branch of HT). (36)
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One of equations (36) must be rejected for a solvability of the equations. Taking
into account the fact that the second representation in equation (24) has a higher
order of small quantity in comparison with the "rst representation, we reject the
equality p

1
"c

1
.

It is possible to calculate from equations (35) and (36) unknown values of b
0
, c

0
and d

0
as functions of the initial displacement a

0
.

Equations (35) are reduced to two equations with unknowns b
0

and c
0
:

j
2
a
0
A"(8/3) (a

0
!b

0
)2, (2j

2
#8/3) (c

0
!n

0
)2"a2

0
c
2
. Equations (35) gives us the

following value of unknown d
0
: d

0
"2a

0
!a

0
/j

1
.

6. CONCLUDING REMARKS

Here the homoclinic trajectories of some principal non-linear dynamical systems
with phase spaces of dimensions equal to two or three, namely, the trajectories of
the non-linear Schrodinger equation and Lorenz equations have been analysed.
This has been performed by constructing local expansions in the vicinity of zero
and in"nity, constructing of Pade' (PA) and quasi-Pade' approximants (QPA) of
the sought solutions, expressing the Pade' coe$cients in terms of arbitrary
constants contained in the local expansions, and imposing potentiality and
convergence conditions which made it possible to evaluate all arbitrary constants,
including initial amplitude values and to solve corresponding boundary-value
problem. Analysis of model examples and principal equations shows a good
convergence of the PA and QPA sequences and not bad precision in the calculation
of the initial values and bifurcation parameters. The methodology presented in this
work is su$ciently general to be applicable to other types of non-linear systems of
dimensions equal to two or three or more.
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